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This paper presents a platform for interactive graph mining and relational machine learning called GraphVis.
The platform combines interactive visual representations with state-of-the-art graph mining and relational
machine learning techniques to aid in revealing important insights quickly as well as learning an appropriate
and highly predictive model for a particular task (e.g., classification, link prediction, discovering the roles of
nodes, finding influential nodes). Visual representations and interaction techniques and tools are developed
for simple, fast, and intuitive real-time interactive exploration, mining, and modeling of graph data. In
particular, we propose techniques for interactive relational learning (e.g., node/link classification), interactive
link prediction and weighting, role discovery and community detection, higher-order network analysis (via
graphlets, network motifs), among others. GraphVis also allows for the refinement and tuning of graph mining
and relational learning methods for specific application domains and constraints via an end-to-end interactive
visual analytic pipeline that learns, infers, and provides rapid interactive visualization with immediate feedback
at each change/prediction in real-time. Other key aspects include interactive filtering, querying, ranking,
manipulating, exporting, as well as tools for dynamic network analysis and visualization, interactive graph
generators (including new block model approaches), and a variety of multi-level network analysis techniques.

CCS Concepts: • Mathematics of computing→ Graph algorithms; Approximation algorithms; Com-
binatorics; Graph theory; • Information systems → Data mining; • Human-centered computing →
Visualization; Visual analytics; Web-based interaction; Interactive systems and tools; Collaborative
and social computing; • Theory of computation → Graph algorithms analysis; Streaming, sublinear
and near linear time algorithms; Parallel algorithms; • Computing methodologies → Artificial in-
telligence; Machine learning; Logical and relational learning; • Networks→ Network types;

Additional Key Words and Phrases: Statistical relational learning, interactive relational machine learning,
interactive visual graph mining, network analysis, visual graph analytics, interactive network visualization,
interactive graph learning, higher-order network analysis, interactive role discovery, link prediction, node
embeddings, interactive graph generation, rapid visual feedback, direct manipulation, real-time performance

1 INTRODUCTION
Graph mining and relational learning play a prominent role in revealing important insights and
modeling phenomena across a variety of domains including social, behavioral, biological, trans-
portation, entertainment, and financial domains [12, 30].1 This paper presents a fast, flexible, and
1Supplementary Materials: Figs. S1 to S11; Tables S1 to S4; and Alg. S1. Video Demo: https://youtu.be/3cCa2jQVb2o
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completely interactive visual graph mining and machine learning platform called GraphVis for
real-time exploration and understanding of complex graph data.2 The goal of GraphVis is to enable
users to quickly obtain the important insights/content from the graph data (e.g., for decision-
making, planning) with minimum effort by taking advantage of state-of-the-art graph mining
and learning techniques paired with a variety of useful visual representations of the graph data
along with easy-to-use and intuitive interaction techniques. It is designed to allow users to quickly
explore and understand graph data via intuitive visual representations and easy-to-use interaction
techniques to explore it in a free-flowing manner in real-time (Fig. 1(b)). GraphVis allows users
to literally move from raw data to insights within seconds by a simple drag-and-drop of a graph
file into the browser [6]. Unlike other network visualization software (such as Gephi [13] and
Tulip [11]) that requires installation and updates, GraphVis is web-based working directly from the
browser. Furthermore, another key difference is that GraphVis is designed to be consistent with
the way humans learn via immediate-feedback upon every user interaction (e.g., change of a slider
for filtering) [2, 6, 62]. Thus, users have rapid, incremental, and reversible control over all graph
queries with immediate and continuous visual feedback. GraphVis strongly follows the rules of
direct manipulation [59] and dynamic (visual) querying [2, 58]. Moreover, existing work has mainly
focused on the network visualization (e.g., visualizing the structure) and interaction techniques
over this visual representation of the nodes and edges. In contrast, this work focuses on developing
state-of-the-art interactive graph mining and relational machine learning (RML) algorithms (that
often output new representations of the graph data) along with a variety of useful and intuitive
visual representations and easy-to-use interaction techniques for identifying important insights
from the original graph data as well as the other data representations given as output by the
state-of-the-art graph algorithms.
While most work in visual analytics has focused on traditional non-relational data [41, 62],

GraphVis is the first interactive visual graph analytics platform with real-time interactive visual
graph mining and relational machine learning techniques and tools for rapid interactive visual
exploration and insight discovery in graphs. Moreover, it is also web-based making it simple and
easy-to-use within seconds. We summarize a few additional important and differentiating aspects
of GraphVis below.3 Other key differences are summarized in Table 1 and discussed in Section 2.

• State-of-the-art interactive visual graphmining techniques are developed including interactive
visual role discovery and community detection as well as other advanced interactive network
analysis methods such as interactive higher-order network analysis, k-truss (triangle-core)
decomposition, among others.

• Interactive visual relational learning techniques for predictive modeling of nodes and edges
as well as interactive visual link prediction and weighting methods.

• Interactive visual graph filtering and querying capabilities for real-time visual exploration
of graphs. GraphVis allows the user to query the graph visually by directly selecting the
subgraph(s) of interest in the visualization windows. Alternatively, the user may also query
the graph using filters based on feature conditions to select interesting nodes, links, or
subgraphs.4 After each graph manipulation is performed such as inserting, deleting, or
querying nodes/links (via filtering, or visually by direct selection), all macro and micro graph
properties (e.g., triangles, graphlets, k-core) are automatically updated in real-time.

2GraphVis is not to be confused with the graph drawing and visualization software called GraphViz [24].
3Note that a fundamental difference between GraphVis and existing systems is the simplicity and degree of interactivity
provided in GraphVis, as the techniques and tools in GraphVis are designed for rapid interactive visual feedback after each
human interaction/event.
4Note GraphVis does not allow queries that involve finding an arbitrary subgraph S in the graph G
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• Interactive visual graph generation including newly proposed block model approaches that
capture community structure. Nodes, edges, subgraph patterns (e.g., k-cliques, k-stars, k-
cycles) or even probabilistic patterns generated via a graph model are easily added to the
existing graph by directly interacting with the visualization.

• Novel multi-level graph properties and transformation techniques are provided in GraphVis
along with multiple visual representations and interaction techniques (e.g., direct manipula-
tion) for real-time exploration and modeling of the various types of graph data in an intuitive
and free-flowing fashion with immediate visual feedback.

To aid the analytic process, both nodes and links may be colored and sized according to a variety of
network properties (e.g., k-core number, eccentricity) or customized by the user. All visualizations
are interactive and support direct manipulation, brushing, linking, zooming, panning, tooltips,
among others [65, 69]. Networks may also be searched via textual query (e.g., node name). To
analyze the microscopic (local) properties of nodes, links, and subgraphs (e.g., triangles, graphlets, k-
core), one can simply select the ones of interest directly in the visualization window. Subgraphs may
be directly selected by brushing over interesting regions of the network visually. Multiple selections
from different regions of the graph are also supported. Selected nodes, links, and subgraphs may be
removed, induced, or even moved by dragging them to the desired location. All macro (global) and
microscopic (local) graph properties are automatically updated in an efficient manner after each
graph manipulation is performed such as inserting, deleting, or filtering of nodes/links. Node and
link information may also be updated easily via double-clicking the node/link. There are many other
features including full customization of the visualization (color, size, opacity, background, fonts, and
so on), text annotation, graph layouts, collision detection, fish eye, and many others. Visualizations
can be exported easily as high-quality images (SVG, PNG) as well as (transformed/filtered) graph
data and attributes. Drag-and-drop graph file(s) to quickly visualize and interactively explore
networks in seconds. A wide variety of graph formats are also supported by GraphVis including
edge-lists (txt, csv, tsv, mtx), XML-based formats (gexf, graphml), and a variety of others.

1.1 Scope of this Article
This article focuses on developing an interactive visual graph analytics platform that supports
real-time interactive visual graph mining and relational machine learning. More formally,

Problem 1 (Interactive Visual GraphMining and Learning). Interactive visual graph mining
and relational learning seamlessly combines visualization, interaction techniques, and state-of-the-art
algorithms for graph mining and machine learning. Desiderata for such a platform includes real-time
performance, support for dynamic and interactive visual graph queries with direct manipulation and
immediate continuous visual feedback as well as support for interactive exploration and modeling
using multiple simultaneous interactive visual representations of the graph data.

A general overview of the process is shown in Fig. 1(a) [62]. Note existing systems lack many of
the key components, properties, and algorithms that lie at the heart of the interactive visual graph
mining and relational learning problem. Table 1 provides a comparison of existing systems with
respect to the problem above which is the focus of this work. Notably, developing such a system
requires many novel components as well as overcoming many algorithmic challenges.

2 RELATEDWORK
Table 1 provides a qualitative and quantitative comparison of GraphVis to previous systems. Most
systems are mainly focused on either graph visualization [11, 13, 17] or graph algorithms for offline
analysis (with no interactive and visual components) [21, 32, 44] and therefore are designed to
solve entirely different problems. In comparison, GraphVis is designed for interactive visual graph
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(a) Interactive visual graph mining & learning overview (b) GraphVis overview

Fig. 1. (a) Overview of the interactive visual graph mining and learning process and (b) is an overview of

GraphVis using the US power grid [64] to explore the vulnerability of the 4,941 power stations with 6,594

lines to various attacks or power failures.

mining and learning problem defined in Section 1.1 which combines visualization and interaction
techniques with state-of-the-art graph mining and relational machine learning algorithms.

To the best of our knowledge, GraphVis is the first interactive visual graph mining and relational
learning platform to seamlessly combine state-of-the-art graph mining and machine learning
algorithms with visualization and interaction techniques for real-time exploration, understanding,
and modeling of graph data. Previous work has mainly focused on offline software/tools that require
downloading and installing a piece of software as well as training (tutorials) to use it [11, 13, 17]. For
instance, Gephi [13] is a java-based software package for network visualization built using OpenGL
whereas Tulip [11] is a C++ software package. Other examples of offline (non-web) platforms
include Osprey [17], among most other platforms summarized in Table 1. However, GraphVis is the
first such web-based visual graph analytics platform with the range and scope of interactive visual
graphmining and machine learning algorithms. The systems closest to GraphVis are Cytoscape [60],
Tulip [11], and Gephi [13]. However, these systems are not easy-to-use/intuitive, are focused almost
entirely on graph visualization, and are not well-suited for interactive visual graph mining and
relational machine learning. In fact, these systems lack support of key components in GraphVis
such as interactive visual relational machine learning algorithms (including both classification
and link prediction/weighting) and many important interactive visual graph mining algorithms as
well as important graph properties such as graphlets for higher-order network analysis. Moreover,
GraphVis supports direct manipulation [59] and dynamic (visual) querying [2, 58] in nearly all
visual representations of the graph structure, attributes, and features derived from GraphVis directly.
In contrast, Gephi [13] and many other systems do not support dynamic visual graph queries with
rapid and immediate visual feedback, and have many other key differences summarized in Table 1.
Other systems that also focus solely on network visualization include Osprey [17], Pajek [14], and
BrainNet [67]. All of these network visualization systems do not focus on interactive visual graph
mining & relational learning. Note that other graph mining libraries such as Stanford SNAP [44],
iGraph [21] and NetworkX [32] are mainly focused on graph algorithms and are not interactive nor
visual and therefore outside the scope of this work. In particular, these systems are not designed for
interactive visual graph analytics (Figure 1(a)). One recent system called g-Miner [18] has focused
on interactive visual group mining. However, that work focuses only on a subproblem of community
identification for multivariate graph data.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: 2018.



Interactive Visual Graph Mining and Learning 1:5

Table 1. Qualitative and quantitative comparison of GraphVis to other existing systems. For brevity, the prefix

“interactive visual” has been removed from each component (column). Note✓indicates some support though

the system lacks one or more components required for an interactive visual graph analytics system such as

interactive visualization, interaction techniques, visual feedback, direct manipulation, real-time performance.
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GraphVis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pajek [14] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Gephi [13] ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓

Tulip [11] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Osprey [17] ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Cytoscape [60] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

BrainNet [67] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

g-Miner [18] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗

“Multi-level features” holds true if the system makes use of both global and local (node/link-based) features as well as global and local
statistics and distributions for interactive visual graph mining. “Higher-order Network Analysis” holds true if the system uses higher-order
graphlet (subgraph) features. “Dynamic Network Analysis” holds true if the system provides techniques and tools for dynamic network anal-
ysis. “Visual Graph Filtering” holds true if the system allows the user to filter the graph via direct manipulation of the visual representation
(e.g., simple lasso-selections of nodes/links). “Community Detection” holds true if the system leverages community detection algorithms,
whereas “Role Discovery” holds true if the system leverages role discovery for interactive visual graph mining. “Visual Pattern Generation”
holds true if users can seamlessly add (complex) patterns to the graph visually using direct interactive manipulation techniques. “Graph
Generation” holds true if users can synthetically generate graphs, whereas “Block Models” holds true if users can generate graphs using
block model approaches. “Relational Classification” holds true if the system provides interactive visual relational classification capabilities
(using input attributes and structural features), whereas “Collective Classification” is true if interactive visual collective classification (semi-
supervised learning) capabilities are provided. “Link Prediction” holds true if the system allows users to interactively predict links, whereas
“Link Weighting” holds true if users can interactively estimate the weight/strength of existing links in the graph. “Web-based” holds true if
the system runs in a web browser. “Interactive Visualization” holds true if the system provides real-time interactive visualization capabilities
where users interact directly with the visualization and changes to the visualization are incorporated in a timely fashion. “Direct Manip-
ulation” holds true if users can interact directly on the visualizations with immediate and continuous visual feedback. “Dynamic Queries”
holds true if the system allows users to formulate (interactive) queries over the visual representation of the data. “Rapid Visual Feedback”
holds true if the system provides rapid visual feedback in real-time after the user initiates a (visual interactive) query. “Multiple Visual Rep-
resentations” holds true if the system uses multiple visual representations of the graph data. “Estimation Methods” holds true if statistical
estimation methods are used for real-time performance. “Parallel Algorithms” holds true if parallel algorithms are used. The remaining rows
hold true if the system uses the particular interactive visual representation.

Besides systems, there has also been a significant amount of research into visualization and
interaction techniques for graphs [33, 36, 38, 42]. Most work has focused on representing graph
data using node-link diagrams which require layout algorithms for computing the position of
nodes (and links) [27, 28, 66]. Recently, fast approximation techniques have also been proposed for
visualizing large graphs, see Hu and Shi [38] for a recent survey. Other work has focused on reduce
the visual clutter (of a graph layout) arising from the size of the graph by transforming the graph
layout using filtering [39, 63] and bundling [22, 29, 35] techniques. Notably, any of the above graph
layout or clutter reduction algorithms can be used by GraphVis. Besides the interactive node-link
visualization, GraphVis also leverages multiple interactive visual representations of the graph
data including a variety of interactive scatter plot matrices for both the node and link features,
interactive data tables, interactive distribution plots, and others. See Table 1 for a summary.

GraphVis is also the first such interactive visual graph analytics platform that leverages statistical
estimation for approximating computationally intensive graph algorithms to ensure real-time
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performance on large graphs. Most estimation methods use some form of sampling [5, 61]. For
instance, Stefani et al. [61] proposed an approach that uses reservoir sampling to estimate triangles
in an edge stream. More recently, Ahmed et al. [4] proposed order-based reservoir sampling to
estimate a variety of properties from massive graph streams. However, any of the above or future
estimation methods that are faster or more accurate can also be easily leveraged by GraphVis to
further improve performance.
Previous work in graph generation has mainly focused on algorithms for constructing graphs

that preserve one or more graph properties such as the degree distribution, triangle counts, and
other graph properties [9, 10, 25, 43]; and has largely ignored the problem of interactive visual
graph generation. In this work, we introduce and incorporate three general classes of interactive
visual graph generators in GraphVis that combine graph generation with interactive visualization
and interaction techniques for real-time visual exploration of the generated graphs and models
with rapid immediate visual feedback. This allows the user to quickly understand and uncover key
insights into the generated graphs and models as well as provides them with a way to quickly add
subgraph/probabilistic patterns to existing graphs for simulation and other important use cases.

Temporal graph visualization has also been the focus of recent research [57, 68] The majority of
this work focuses mainly on visualization approaches for temporal networks [15, 16, 47] and not
on statistical techniques for dynamic network analysis [1, 34].

3 INTERACTIVE GRAPH MINING
3.1 Multi-level Graph Features
Visual analytic tools need to allow for interacting and reasoning across multiple simultaneous
scales of data representations [23]. Thus, we developed GraphVis with a multi-scale visual analytics
engine to support (visual) interactive network exploratory analysis at both the global macro-level
as well as the local microscopic level. Visual graph mining and machine learning techniques lie
at the heart of GraphVis and provide the analysts with a set of powerful tools to discover key
insights and reveal important structural patterns interactively in real-time. Such an approach is
vital for interactively exploring big data in real-time by summarizing its patterns, statistics (binning,
distributions, etc.), as well as spotting anomalies. Statistical techniques are used to find interesting
nodes, allowing the user to sort through the top-k most interesting nodes for further investigation.
Table S4 provided in the supplementary material summarizes the computational properties of many
multi-level graph features used in GraphVis.

Every update, insertion, or deletion of a node, edge, or subgraph is immediately reflected in the
visualization window. Furthermore, the visualization and analytics are also updated immediately
upon any parameter change via sliders or other interface controls. This allows to quickly test a
hypothesis as well as investigate the impact of certain actions on the network structure and its
properties/statistics. For instance, suppose we use betweenness to filter the graph, as we adjust the
slider, the analyst receives visual feedback immediately at each change in the slider (in contrast to
adjusting the slider to the desired value, then receiving feedback on the selection).

3.1.1 Macro-level Interactive Graph Analysis. At the macroscopic (global) level, we use a variety
of key network properties. A few of these include max/mean degree, total triangles, global clustering,
max k-core number, diameter, mean distance, approx. chromatic number, number of communi-
ties/roles, and max k-truss (triangle-core) number [50]. To help guide the interactive exploration,
we display many of the important macro properties that help characterize the global structure of the
network and any selected subgraphs (see the left-most panels in Fig. 1(b) and Fig. 6(a)). Statistical
aggregates (mean, max, mode, sum, var.) are also provided to aid in understanding the graph.
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3.1.2 Micro-level Interactive Node & Edge Analysis. To facilitate the discovery process, GraphVis
provides interactive exploration at the microscopic (local) level, e.g., using edge and node degree,
eccentricity, k-core number, and k-truss (triangle-core) number. In addition, many important social
network analysis measures are used in the interactive visual analytics including betweenness,
number of triangles, clustering coefficient, path lengths, PageRank, and many others. These node
and link properties are displayed in visual form and can be explored/manipulated directly by the
user in a free-flowing manner (e.g., using brushing, linking, zooming, mouseover, filtering, and so
on). For instance, the neighborhood of a node (link) can be highlighted as well as its micro-level
statistics and properties. See Fig. 6(c) and Fig. S11(a) for node-centric examples and Fig. 7(b) for
links. Multiple visual representations of the graph data are also provided. For example, GraphVis
leverages an interactive scatter plot matrix tool for analysis of the correlation between pairs of
link statistics (Fig. 3) or pairs of node statistics (Fig. S11(b)). Users can also interactively highlight
interesting nodes (links) across the various measures, interactively filter them, color and weight
them using various properties, among other possibilities. Furthermore, semantic zooming can
be used to drill-down in order to understand the differences between individual nodes and links.
Many other important measures are also available including k-truss numbers, graphlet counts (e.g.,
number of 4-cliques incident to a link/node), as well as a variety of others. GraphVis also provides
interactive data tables for exploring and searching the graph data (Fig. S4).

3.1.3 Distributions. Node and link summarization techniques (e.g., binning/histograms, statisti-
cal distributions) are used to obtain fast, meaningful and useful data representations. For example,
we leverage binning methods to interactively compute and maintain the frequency distribution of
some graph properties (e.g., degree distribution) upon any update, insertion, or deletion of a node,
edge, or subgraph. Furthermore, we also interactively plot the cumulative distribution function
(CDF) and the complementary CDF, which are easily computed from the frequency distribution.
These are known to be important for networks, capturing interesting structural properties (e.g.,
heavy-tailed distributions). Furthermore, we also utilize sampling [3] as well as fast ranking al-
gorithms for displaying top-k nodes, links, and subgraphs to the user for further exploration. In
addition to distributions, the macro-level measures are also useful for big graph data and vital to
the multi-level strategy offered by GraphVis.

3.2 Interactive Dynamic Network Analysis
Dynamic Network Analysis (DNA) [19] has become increasingly important as most networks are
naturally evolving over time [20, 40]. To understand and explore the temporal dependencies that
lie at the heart of these networks, we propose interactive visual dynamic network analysis tools.
Further, GraphVis provides tools to interactively analyze the evolution and dynamic patterns that
arise in graphs over time. See Fig. 2 for an example. We also provide tools to easily and intuitively
filter the graph based on time. In particular, the time scale (resolution; e.g., 10 minutes, 1 day) can
be selected via brushing and adapted based on the application or data properties. This controls
the temporal graph being visualized as shown in Fig. 2(b). Using these tools, analysts can begin to
understand the dynamics and trends present in the network (e.g., seasonality, spike, trends).

4 INTERACTIVE GRAPH QUERYING AND FILTERING
Data is selected in GraphVis using two general approaches that are both intuitive and flexible for
a wide variety of use cases and important applications. Nodes, edges, and subgraphs are easily
selected by visual inspection (Section 4.1) or by an important graph property or statistic (Section 4.2).
Nevertheless, both approaches leverage the real-time interactive visualization to help guide the
user to the warranted strategy. As an aside, once the user selects a subset of nodes and links via
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(a) Full network (b) Temporal window (1 day)

Fig. 2. Interactive dynamic network analysis of an email communication network (multigraph) consisting of

121 Enron employees whom send 11245 emails to each other (representing links) over a 3 month period [7].

This data was released to the public by the Federal Energy Regulatory Commission during its investigation

into fraud. (a) The full network without using a temporal window to filter the graph. (b) Using a small

temporal window, we immediately see many of the major players involved in the Enron scandal.

one or more queries, they can be removed or explored interactively in real-time using a variety of
interactive visual graph mining and machine learning techniques.

4.1 Visual Selection and Filtering of Subgraphs
One may select multiple nodes, links, and subgraphs in a visual and completely interactive manner.
The process is both easy, intuitive, and fast, and unlike other approaches, one may select a single
node or a subgraph of interest with a simple drag of the mouse (Fig. 1(b) and Fig. 6(a)). The
simplest means of selecting nodes, links, or subgraphs is to simply press and hold shift key while
selecting any arbitrary set of nodes and links. Multiple selections are also easily possible using
the same method. For instance, once a subgraphs has been selected, release all keys, then make
additional selections by pressing and holding the shift key once again. Nodes (links) can be visually
selected using other intuitive visual representations of the data. In particular, besides selecting
nodes/edges visually using the node-link diagram directly, one can also leverage other interactive
visual representations of the graph data such as the interactive scatter plot matrix tool in GraphVis
as shown in Fig. 3. Note that this approach can be viewed as a hybrid between visual filtering and
filtering based on graph properties as it combines an intuitive visual representation allowing visual
queries based on node/link properties of interest.

4.2 Selection and Filtering via Properties
Besides the intuitive visual filtering (or selection) from Section 4.1, one may also interactively filter
the graph using a wide range of graph properties, statistics, and queries (as shown in Fig. 6(b)).
Notice that a key difference between visual filtering and filtering via node/edge properties is that
previously the filtering has been performed manually, i.e., the user manually decided which nodes
to select by visual inspection of the graphs general structural patterns (and connectivity) or by
investigating the properties of each node to determine its fate or fitness w.r.t. the individual’s
objective. Nodes and edges can be filtered (or selected) interactively based on the node/edge
properties. In Fig. 6(b), the user interactively filters nodes and edges from the network visualization
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by changing a simple slider. In particular, Fig. 6(b) interactively filters all nodes that the model
is highly confident about (with uncertainty ≤ 0.50) and therefore leaving only the nodes that
the model is most uncertain. Note that any new feature constructed by the user is automatically
included in the list of properties that can be used to filter various visual representations of the data.

Fig. 3. The interactive scatter plot matrix tool is useful for exploring and understanding the data through

real-time interactive queries. A rectangle is drawn which corresponds to the data points that fall in the

user-defined range. Note that interactive dynamic queries are simple and intuitive to use (by drawing a

rectangle via a mouse-click, and drag to adjust the size and position). In this use case we interactively

explore a co-authorship network from the Arxiv High Energy Physics category (ca-HepPh) consisting of 8,361

authors with 15,751 co-author links indicating that the two authors collaborated on at least one paper [48].

In particular, the user selects all co-author links with ES = {x1 ≤ 150 ∧ x2 ≤ 300} — i.e., all links with
triangle count less than 150 and 4-node stars less than 300. The selected co-author links are highlighted

across the interactive scatter plots. Multiple such interactive queries can be configured by simply drawing

multiple regions. Data points representing co-author links are colored and sized based on the number of

tailed-triangles. For large graphs, sampling is used to select a representative set of points to render (without

degrading quality as many points overlap and thus can be removed).

5 INTERACTIVE GRAPH PARTITIONING
GraphVis provides a diverse collection of visual interactive graph partitioning methods. Intuitively,
graph partitioning can be categorized into role discovery [51] (Section 5.1) and community de-
tection [26] (Section 5.2). Roles and communities are fundamentally different but complimentary
graph concepts. Informally, communities are sets of nodes with more connections inside the set
than outside, whereas roles are sets of nodes (or edges) that are more structurally similar to nodes
(edges) inside the set than outside. The fundamental difference is that communities are based on
connection density (or cohesion, proximity; see [26]) whereas roles are based on structural similarity
or equivalence [45] (e.g., nodes that are the center-of-stars/hubs are all assigned to one role). Thus,
nodes that share roles (are structurally similar) may be in different communities whereas nodes in
the same community are generally close to one another but may have different structural roles.
The other difference is that roles capture general node-level (or edge-leve) structural patterns and
therefore generalize across networks whereas communities do not. Note that there are other types
of graph partitioning methods such as graph coloring that are also incorporated into GraphVis. All
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graph partitioning methods in GraphVis are designed to be efficient taking at most linear time in
the number of edges to compute.

(a) Edge roles correlated with class label (b) Node and edge roles

Fig. 4. Interactive Role Discovery. (a)We explore the behavioral roles from a network of disorders/diseases

and genes linked by known associations [31]. Edges are colored by the role with largest membership. Nodes

are colored by class label (disease • / gene •). (b) Interactive visual mining using node and edge roles of a

network science co-authorship graph [49] with 379 scientists from the network science community with 913

links indicating co-authorship, i.e., individuals who authored at least one paper together [49]. For example,

authors (nodes) and co-author links that are gate-keepers (bridge roles) connecting different groups of authors

are shown in red (e.g., Mark Newman). See text for further discussion.

5.1 Interactive Role Discovery
Using the notion of feature-based roles as a basis [51], we design and implement a few interactive
role discovery methods. In particular, discovering feature-based roles has the following key steps:
Given the graph G, we first derive an initial feature-based representation (node/edge features) and
then group/cluster the features into roles using matrix factorization or k-means. As initial features,
we use a variety of graphlet features of size 2, 3, and 4. We also include other features such as
in/out/total degree/egonet, k-core number, betweenness, among many others. While GraphVis
currently only exploits the above features, we can also discover more complex deeper features using
recent graph-based deep learning and graph embedding approaches [56]. Given this feature matrix,
we then use k-means or a (non-negative) matrix factorization approach to group the features. The
appropriate number of roles can be selected using a model selection criterion or interactively by
the user (e.g., by adjusting a simple slider). Fig. 4 demonstrates the effectiveness of the interactive
role discovery approach. In particular, Fig. 4(a) visualizes the edge roles learned from a network
of disorders/diseases and genes linked by known associations [31]. We observe that edge roles
are clearly correlated with the class label of the node. Intuitively, this makes sense since they
capture the structural behavior surrounding each edge in the network. The node and edge roles of
a network science co-authorship network [49] are shown in Fig. 4(b) and can be easily interpreted.
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For instance, the first node and edge role (i.e., the red nodes and edges in Fig. 4(b)) represent a
type of gatekeeper/central role where the nodes/edges have high betweenness and are crucial for
maintaining the connectivity of the graph (i.e., removing such nodes would break apart the graph
into many disconnected components).

5.2 Interactive Community Detection
We designed a fast and effective interactive community detection approach. In particular, the
approach begins with each node (or edge) belonging to its own community. For each node vi ∈ V
(or edge), we assign it to the community Ck ∈ C that has the maximum number of neighbors Γ(vi )
in it. More formally, arg max

Ck ∈C

∑
vj ∈Γ(vi )

Ijk (1)

where Ijk = 1 if vj ∈ Ck , and 0 otherwise. Notice that the above criterion in Eq. 1 can be easily
replaced/modified to take into account other important aspects. The algorithm converges when an
iteration results in no further changes (i.e., no new assignments are made) or if the max number
of iterations is reached which can be interactively tuned by the user. Upon each iteration, we
compute a random permutation and use this ordering to assign nodes (or edges) to communities. To
further speedup the approach, we leverage the number of previous iterations that the community
assignment of a node (or edge) remained unchanged (i.e., the community of vi remained stable
over the last t iterations). In particular, let δ denote a hyperparameter that controls the number
of previous iterations that the community assignment of a node or edge must remain unchanged
before it is declared as final. Thus, each iteration of the approach can be defined over the set S
of graph elements (nodes/edges) that are still active, i.e., Ti < δ where Ti denotes the number of
subsequent iterations that vi has remained unchanged (w.r.t. community assignment). Fast and
efficient localized updates are performed when new nodes/edges are added by the user (e.g., using
a pattern generator proposed in Section 7.1). In Fig. S10 provided in the supplementary material,
links and nodes are colored according to their community membership and can be interactively
explored using the wide variety of interactive visual graph mining techniques. For instance, the
user can select a community of interest by drawing a rectangular region around it. Once selected,
the macro-level/global properties of that community are immediately computed and displayed next
to the properties of the full graph to make it easy for the human analyst to interpret and compare.
The user can also interactively tune a variety of parameters (e.g., max number of iterations or
number of communities) and see the impact immediately in real-time allowing the user to quickly
find and explore other community assignments in real-time. Other more computationally intensive
methods such as spectral clustering or NMF-based community detection can be easily incorporated
into GraphVis.

6 INTERACTIVE RELATIONAL MACHINE LEARNING
6.1 Interactive Relational and Collective Classification
Relational Machine Learning (RML) [30] methods exploit the relational dependencies between
nodes to improve predictive performance. However, these approaches can often fail in practice
due to low relational autocorrelation, noisy links, sparsely labeled graphs, and problems with the
graph data representation. To overcome these problems, interactive relational machine learning
(iRML) techniques are developed in which users interactively specify relational models and data
representation (via transformation techniques for the graph structure and features), as well as
perform evaluation, analyze errors, and make adjustments and refinements in a closed-loop [54].
In particular, humans interact with relational learning algorithms such as wvRN [46] and Relation
Similarity Machines (RSM) [55] by providing input (in the form of labels, similarity/kernel function,
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hyper-parameters, priors, confidence/uncertainty about particular instances, learning rate, correc-
tions, rankings, probabilities, evaluation) while observing the output (in the form of predictions,
uncertainty, feedback, and any useful visual representation of the data). Other algorithms including
a relational variant of decision trees and SVM have also been implemented in GraphVis.
GraphVis combines fast, flexible, and powerful relational learning techniques with interactive

visualization to aid in evaluation, tuning, analysis of errors, model selection, regularization, semi-
supervised information, among others. It is designed for rapid interactive visual exploration and
learning through visual representations and interaction techniques at each stage; and enables users
to trade off competing goals, encode prior knowledge, understand the model, and analyze errors
and uncertainty. These techniques facilitate the design and selection of a relational model (from
the space of potential models), their evaluation, error and uncertainty analysis, as well as enable
users to interactively refine them in a closed-loop. An overview of the proposed iRML system in
GraphVis is shown in Fig. 5. In that example, we first interactively learn a model (for the cora
network), then select the misclassified nodes for further analysis. The global statistics of the selected
subgraph are shown in the right-most panel. Node color represents the model’s uncertainty using
an entropy-based measure, whereas the size of the node indicates whether it was correctly classified
or not. In Fig. 5, misclassified nodes are given a larger size so that they can easily be identified for
further exploration. Uncertainty (and learned class prob. distribution, statistics) of a node or set
of nodes may also be displayed by selecting or mousing over the nodes of interest as shown in
Fig. 6(c). The iRML system also supports interactive real-time visual graph filtering, e.g., remove
all uncertain nodes above a user-specified threshold as shown in Fig. 6(b) and Fig. 6(a). Moreover,
all visualizations are interactive and support brushing, linking, zooming, panning, tooltips, and
others (Fig. 6(a)). Efficient update rules are also derived to avoid relearning the entire model after
each user interaction/visual query. For example, after the deletion (or insertion) of a node, we can
update the global relational model via a fast localized update. These local updates enable real-time
exploration capabilities by leveraging fast exact or approximate solutions (e.g., to support real-time
interactive queries; see Fig. 6(a)).

Many of the iRML components in GraphVis can be quickly explored in real-time using interactive
visualization and analytic techniques including the attribute to predict, initial features to use (non-
relational and graph-based features), local model for estimation, kernel function (RBF, polynomial),
hyperparameters (for selected kernel), node- and feature-wise normalization scheme (e.g., L1, min-
max), as well as whether to use Semi-Supervised Learning (SSL), meta-features (based on current
estimates), among others (e.g., see the right panel in Fig. 5). Interactive link prediction methods
proposed in Section 6.2 and other important learning components in GraphVis can be leveraged

Fig. 5. Interactive Relational ML. We use the cora citiation
network [46] consisting of 2,708 papers with 5,429 citation

links between them. See text for discussion.

Table 2. Average time per test instance. Note

|V | is the number of nodes andV ℓ
is the num-

ber of labeled nodes.

graph |V | |E | |V ℓ | |C | avg. time

soc–terror 881 8.5K 90 2 0.18 ms
aff–polbooks 105 441 12 3 0.12 ms

cora 2.7K 5.4K 272 7 0.97 ms
DD6 4.1K 10.3K 417 20 3.10 ms
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(a) Interactive relational learning

(b) Interactive filtering via uncertainty

(c) Exploring local confidence

Fig. 6. At the heart of GraphVis lies the ability to interactively learn models in real-time and adjust them

accordingly, as well as tune parameters, explore/construct features, among many other possibilities. In this

use case, we use a network of 881 individuals including known terrorists, their family members, and other

known contacts with 8,592 links between them indicating known associations (soc-terror) [70]. In (a) the user

interactively learns a global model (see the leftmost black side panel for stats and accuracy) and then selects

a subgraph H of individuals visually by drawing a region around the individuals of interest. A local RSM

model is immediately learned for H (in real-time) and stats and accuracy (using same k-fold CV) are reported

in the red side panel on the left side. Individuals (nodes) are colored by their class label (terrorist/normal). (b)

Interactive filtering via uncertainty. All individuals (nodes) and associations with high confidence are filtered

(≤ 0.50), leaving only those individuals (terrorists, family members) that are most uncertain. Relative entropy

is used to measure the uncertainty of the learned probability distributions. (c) Interactive visual exploration

of the local probability distribution learned for individuals, as well as the uncertainty, and other model and

graph features via simple and intuitive local dynamic queries initiated by simply lasso-selecting a node or

group of nodes. In (b)-(c) nodes are colored by class label and weighted (sized) by uncertainty.

directly to improve learning and inference of the user-defined iRML method. Fig. 6(a) demonstrates
a few other useful features. In particular, the iRML platform in GraphVis is shown to be fast,
parallel, space-efficient, amenable to streaming and dynamic queries/updates, and most importantly,
naturally supports real-time interactive learning and inference, and provides rapid immediate (and
visual) feedback to the user at real-time interactive response times.

6.2 Interactive Link Prediction and Weighting
The quality and utility of the visualizations and interaction techniques depend on the underlying
data representation(s). Moreover, graph data is often unreliable, noisy, and uncertain, and therefore
techniques are needed to explicitly model and account for such uncertainty and noise. In this
section, we introduce the interactive link prediction and link weighting problems and propose
interactive techniques and computational models for discovering an appropriate representation of
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the data for a given task that reveals the important patterns/information of a large, complex, and
potentially dynamic graph. These models are designed to be fast, flexible, and operate at multiple
levels of abstraction giving rise to a variety of useful data representations that facilitate visual
analysis (by a human analysts in a timely fashion). Furthermore, the visual representations and
interaction techniques for link prediction and weighting are shown to be useful for robustifying
the graph data, or finding and removing noisy and/or spurious links through efficient exploration
of the space of models. All of these techniques facilitate the human analysts ability to understand
and reason about complex graph data in a timely fashion.

(a) Interactive link prediction (b) Interactive exploration of the predicted links

Fig. 7. Interactive link prediction. In (a) the user can interactively learn link prediction models using the

easy-to-use interface on the lower-right (red rectangle). Notably, we learn a model using squared-loss with

non-negativity constraints and use it to predict the top-k links with largest weight in a network science

co-authorship network (ca-netscience) [49]. The black dashed links (d) above are predicted links which

represent authors whom are likely to publish together as well as share similar interests. Moreover, the

predicted links can be viewed as co-author recommendations. All of the various components of the link

prediction and weighting models can be interactively explored in real-time. Notice that one can interactively

predict links and then use the new graph representation to improve the accuracy of classification by using

the interactive relational learning/classification component of GraphVis. (b) Uses the previous interactive

visual graph techniques in GraphVis to explore and understand the predicted links in real-time. For instance,

in the above visualization, the user hovers over a link to display its properties and visually selects a subgraph

of interest that contains many of the predicted co-authorship links.

Link prediction is the task of predicting the existence of a new (unobserved) link (vi ,vj ) < E
between two nodes in G, whereas link weighting is the problem of estimating the true weight Φi j
of a link (vi ,vj ) ∈ E. The link weighting problem is also called relationship strength estimation.
Estimating the strength of relationships is an important problem and may be useful for improving
predictive models by reducing the impact of noisy or spurious links, or to identify important or
influential individuals in social networks, among other applications.
We solve both problems by finding W ∈ Rm×d and H ∈ Rn×d where d ≪ min(m,n) such that

A ≈ WHT.5 More formally, find:

min
W,H

∑
(i, j)∈E

{
(Ai j −wT

i hj )
2 + λw ∥wi ∥

2 + λh ∥hj ∥2
}

(2)

5Note that for the link weighting problem one can hold-out a fraction of the links, learn a model on the other (observed)
links, and then use the model to estimate weights for the links in the hold-out set. Other techniques that leverage the above
low-rank matrix approximation are also possible.
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Intuitively, each row wT
i ∈ Rd of W represents a d-dimensional embedding of the i-th row in

A (aTi ∈ Rn) whereas each row hTj ∈ Rd of H represents a d-dimensional embedding of the j-th
column in A (aj ∈ Rm). The regularization parameters λw > 0 and λh > 0 in Eq. (2) are scalars
that trade off the loss function with the regularizer. The above low-rank matrix factorization maps
each row i or column j of A to a feature vector wi or hj in a d-dimensional latent space. Notice the
above uses a nonzero squared loss: (Ai j −wT

i hj )
2, though, any arbitrary separable loss may be used.

Furthermore, we can impose hard constraints C onW and H such as non-negativity constraints
W,H ≥ 0:

min
W≥0,H≥0

∑
(i, j)∈E

{
(Ai j −wT

i hj )
2 + λw ∥wi ∥

2 + λh ∥hj ∥2
}

(3)

GraphVis uses a recent scalar (block) coordinate descent optimization scheme with fast and efficient
element-wise updates along the columns [53]. We can estimate the likelihood of a link between i
and j where (i, j) < E using wT

i hj directly. This can be repeated for each pair (i, j) < E (or a sample
of such pairs) and the top-k links with largest weights can be maintained efficiently (see discussion
below for details). Furthermore, we estimate the link strength/weight of existing edges as wT

i hj
where (i, j) ∈ E. In Fig. 7, we predict the top-k links with largest weight and visualize these links
immediately as the user interactively explores various models, model dimensionality, objective
functions, constraints, regularizers, regularization hyperparameters, among others. To efficiently
compute and maintain the set of top-k links, we maintain a priority queue (implemented as a
min-heap) allowing us to check in o(1) time whether a given link with an arbitrary weight should be
included in the set of top-k links or not. A link is added to the set of top-k links if its weight is larger
than the link with the smallest weight existing in the set (assuming k links already exist and thus it
is at max capacity). The previous link with smallest weight is discarded first. Furthermore, it takes
only O(logk) time to add a link to the min-heap. Obviously, it takes only O(k) space. Estimating
the strength of a single link takes O(d) time. Therefore, it takes O(nmd) time to estimate all pairs
in A. Both can be efficiently computed in parallel.
The sliders and other interface elements on the right in Fig. 7(a) allow the user to interactively

tune the link prediction and weighting models based on the objective function, constraints, dimen-
sionality, regularization, number of inner and outer iterations in the optimization scheme, the error
tolerance before convergence, the number of links to predict, and other factors. After each model is
learned, the user can understand and explore the models in real-time by coloring, weighting, or
filtering the graph using features derived from the model such as the estimated link weights.

Improving Classification: We may also use interactive link prediction to learn a more effective
relational representation for a variety of relational learning tasks. In particular, Fig. S6 in the
supplementary material shows the impact on the network structure when the approach is used.
Strikingly, the approach creates edges between nodes of the same class, making them significantly
closer compared to the original relational data. Another example is shown in Fig. S7 where we
find that links are predicted among the misclassified nodes of the same class. The predicted links
reinforce the misclassified nodes by connecting them up to nodes with the same class. Hence,
learning a model using the new graph representation often leads to better predictive performance.

7 INTERACTIVE GRAPH GENERATION
Graph generators are useful for simulations, testing algorithms, assumptions, benchmarks, among
others [12]. The interactive graph generators developed in this work are broadly categorized into:

1) Pattern-based graph generators that allow users to easily add subgraph patterns (such as
k-cliques, k-stars) to an existing graph by interacting directly with the network visualization.
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2) Interactive model-based graph generators (Section 7.2.1), as well as novel block model ap-
proaches that capture community structure and other properties better (Section 7.2.2).

3) Hybrid approaches that allow users to add realistic probabilistic patterns (based on a graph
model) to existing graphs via direct manipulation with the visualization (Section 7.3).

7.1 Pattern-based Graph Generators
This section first introduces basic concepts used to create and control pattern-based graph genera-
tors, then we introduce the main types of pattern-based generators. Given a graph G = (V ,E) and
a subgraph H = (W , F ) representing an arbitrary graph pattern (e.g., clique) selected by the user,
how should we connect the selected subgraph pattern H to the original graph G?
The goal is to make it as easy and intuitive as possible while also being the most generally

useful for a wide range of applications and use cases. We satisfy this goal by allowing users to
quickly select nodes inG for which the subgraph pattern H will be connected based on a lasso-type
selection or user-specified region, e.g., a circle centered at (x ,y)— the current position of the cursor;
and a radius specified by the user that controls the nodes under consideration w.r.t. a particular
(x ,y) position. Once nodes are selected, the subgraph pattern H is added toG by simply clicking
directly on the visualization, e.g., nodes in G that lie within the region (defined by the cursor (x ,y)
location in the visualization window and its size/radius) are connected to the new nodes from the
newly generated pattern H . Intuitively, this makes it easy and fast for users to generate synthetic
graphs for simulations, exploration, hypothesis testing, among others. More formally, given the set
of selected nodesU ⊆ V (e.g., that lie in the region centered at the mouse cursor), we create a link
for each pair of nodes (u,w) such that u ∈ U (node in the region) andw ∈W (node from pattern).
Finally, all pattern-based graph generators have an additional parameter that controls the effective
size of the subgraph pattern in terms of nodes added to the graph (e.g., clique of size k).

There are two main types of pattern-based graph generators: (i) simple edge and node patterns
and (ii) fundamental subgraph patterns such as k-stars, k-cliques, k-cycles, and k-chains that
serve as fundamental building blocks of complex real-world networks. For a summary of the main
pattern-based generators, see Table S3 provided in the supplementary material.

7.2 Interactive Model-based Generators
This section presents two fundamental classes of interactive model-based generators: (i) interactive
probabilistic generators (Section 7.2.1) and (ii) interactive block model generators (Section 7.2.2).

7.2.1 Interactive Probabilistic Generators. GraphVis also provides users with a wide variety
of interactive probablistic generators based on models such as Chung-Lu (CL) [9], preferential
attachment (PA) [10], Erdős-Rényi (ER) [25], Kronecker product graph model (KPGM) [43] and
random geometric (RG) graphs. A few probabilistic generators are now discussed. Let er(n,p)
denote an ER graph [25] that arises from fixing N nodes and generating edges independently with
probability p. Thus, the expected degree for each node is simply p(N − 1). Other random graph
models were proposed for other types of networks and/or objectives. For instance, CL [9] and PA
models [10] match expected scale-free degree distributions. More specifically, the probability of
adding the edge (i, j) in CL is: P(i, j | d) = didj/

∑
k dk . All graph models are completely interactive

and easily explored visually in real-time by adjusting the various model parameters. Interactive
graph models enable users to quickly understand the fundamental processes governing each of the
graph models through interactive visualizations, and are useful for simulations, testing algorithms,
among other applications. Furthermore, all interactive visual graph mining techniques as well as
interactive visual filtering are useful for interactively exploring, querying, and making sense out of
the graph models in real-time.
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(b) Step 2: Add global edges between the blocks

Fig. 8. Overview of the general block model approach. (a) generates local edges within each block whereas

(b) generates global edges between each block. The user can interactively select the graph modelM ∈ M to

use for each step above. In addition, the user can interactively tune the number of nodes, number of blocks,

as well as the parameters of the local and global graph models used in Step 1 and 2 above.

7.2.2 Interactive Block Model Generators. For capturing community structure, we propose a
number of interactive block model approaches that combine multiple one-stage probabilistic models
such as CL, ER, or PA by creating K graphs using these one-stage probabilistic models and then
connecting them up by adding edges between the graphs (inter-community/block edges) via another
graph model (e.g., an ER model) which we denote as the global graph model. As an example, a user
can select a CL model to generate K graphs and then add edges between each of them using an ER
model according to some probability pc . More formally, the process begins with N isolated nodes
which are then distributed among the K blocks in some fashion (e.g., using a uniform discrete
distribution Fb ) which is performed as a preprocessing step. Afterwards, the general interactive
block model approach has two main steps (shown in Fig. 8):
Step 1: This step generates local edges within each block Bi ∈ {B1,B2, . . . ,BK } (intra/within-block

edges) according to the user-defined local graph model M ∈ M where M is the set of graph
models such as ER, CL, or PA. See Fig. 8(a) for an intuitive illustration.

Step 2: This step creates global edges between the K blocks (inter-block edges) according to the
user-defined global graph modelMG ∈ M. See Fig. 8(b) for intuition.

All interactive block models are easily explored in real-time by adjusting a few simple parameters
via sliders and other simple visual interface elements such as dropdown boxes to select the local
or global graph models to use. After each user interaction GraphVis generates the resulting block
model specified by the user and visualizes the graph in real-time (within seconds) which the user
can then use to further refine. The user can interactively generate and visualize the resulting graphs
in real-time (within seconds) by adjusting a number of important parameters and models used
in the generation process. First, the user can select the number of nodes N to use as well as the
number of communities (blocks) K to use in the block model generation process. Second, the user
can also interactively select the local graph modelM ∈ M to use for generating edges within each
of the K blocks. Third, once the local graph modelM is selected the user can adjust the local graph
model parameters used to generate the edges within each block Bi ∈ {B1,B2, . . . ,BK } (e.g., if ER is
used then one can adjust the probability of an edge).

We have included a number of useful block models which can be selected via a dropdown menu.
Examples of three block models including Block ER, Block PA, and Block CL are shown in Fig. S9.
For Block ER, Block PA, and Block CL we use ER, PA, and CL for the local graph models, respectively.
For the global graph model used to create edges between blocks we use an ER model for Block ER,
Block PA, and Block CL. Nodes are distributed into blocks using a uniform discrete distribution Fb .
Similarly, one may also generate the initial graphs using multiple one-stage graph models (such as
CL and ER) and then combine them as done previously in Section 7.1.
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7.3 Hybrid approaches
We also propose hybrid approaches that allow users to generate hybrid patterns of a fixed size by
interpreting probabilistic model-based generators as probabilistic patterns that can be interactively
added by the user in the same fashion as the simple patterns defined in Section 7.1. For instance,
the user can easily add a Chung-Lu pattern of a fixed size (i.e., number of nodes) and connect this
pattern up to any of the currently visualized nodes using the same simple visual interactive process
proposed in Section 7.1. This reinterpretation provides an easy and intuitive way to add realistic
probabilistic patterns to existing graphs by interacting directly with the visualizations.

8 REAL-TIME INTERACTIVE PERFORMANCE
Interactive visual graph mining and learning requires efficient, fast, and parallel algorithms to
achieve real-time interactive rates. Section 8.1 presents a general estimation framework for prov-
ably accurate approximation of subgraph counts and other important graph properties whereas
Section 8.2 discusses parallelization of GraphVis.

8.1 Leveraging Statistical Estimation Methods for Real-time Performance
A key challenge when designing interactive graph mining and learning tools is speed and real-time
performance. To overcome these challenges, we leverage fast and accurate estimation methods
for many of the computational intensive graph parameters such as induced subgraph counts and
statistics (graphlets, network motifs), roles/communities, diameter, betweenness, eccentricity, and
other distance-based measures.

Fig. 9. Application of the accurate estimation methods for real-time interactive visual graph mining and

learning. Left: A subset of the Western US Power Grid network [64] consisting of substations connected by

high-voltage transmission lines. Substations and transmission lines are colored/weighted by the estimated

local 4-path count. (A) Estimated global graphlet counts and other statistics; (B) summary statistics of the

selected subgraph (rectangular region); and (C) local graphlet statistics (including frequency, mean, max,

standard deviation, ...) of the selected link. Right: Exact and Estimated Graphlet Features are Nearly Identical.
In this use case we explore a router-level graph with 2,113 routers and 6,632 connections (links) between

the routers [52]. Routers and links are colored and weighted by the local 4-cliques. The exact local 4-clique
counts are shown on the left whereas the right is estimated counts (using the estimators in Alg. S1 of the

supplementary material with ϵ = 0.05 and δ = 0.05). See text for further discussion.
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Table 3. Global estimates of expected value

and relative error using 100K samples. The

graphlet statistic for the full graph is shown

in the first column.

graph |E | X X̂ |X−X̂ |

X

4-
cl
iq

e

ca–citeseer 814K 18.7M 18.7M 0.0004
ca–dblp-2012 1M 16.7M 16.7M 0.0004
soc–gowalla 950K 6M 6M 0.0009
soc–pokec 22.3M 42.9M 42.9M 0.0002

socfb–Berkeley 852K 26.6M 26.6M 0.0007
socfb–Indiana 1.3M 60.1M 60.1M 0.0004

socfb–MIT 251K 13.6M 13.6M 0.0004
socfb–Texas84 1.5M 70.7M 70.7M 0.0002

web–wikipedia09 4.5M 1.4M 1.4M 0.0004

Table 4. Local graphlet estimation experiments. We esti-

mate both the counts and graphlet frequency distribution

(gfd) for the top-1000 edges with largest degree (dv +du )
using a sampling probability of πr = 0.01 and report the

average relative error.

graph

soc–gowalla gfd <10−4 <10−4 <10−4 <10−4 <10−4 <10−4
count 0.008 0.008 0.001 0.006 <10−4 0.0003

ca–dblp12 gfd 0.0001 <10−4 <10−4 <10−4 <10−4 <10−4
count 0.003 <10−4 0.0003 <10−4 0.0004 <10−4

socfb–Texas84 gfd 0.001 0.001 0.001 0.001 0.001 0.001
count 0.031 0.075 0.013 0.042 0.002 0.002

8.1.1 General Estimation Approach: From Global to Local Statistics and Distributions. We describe
a general approach for estimating both global and local statistics (and distributions), and mention
any modifications that may be required for computing either global or local statistics and local
distributions. We also discuss a number of statistics that illustrate a variety and range of statistics
that can be estimated using such an approach. For generality, we use the term graph element to refer
to either a node or link. Let θ (s) andΘ(G) denote the local and global single-valued statistic for graph
element s and graph G, respectively. For estimating local distributions (e.g., degree distribution),
we use Θ(s, t) for the value at s with parameter t . We now present the general approach:

(1) Sample K graph elements to obtain the set S using an arbitrary sampling method6

(2) For each graph element s ∈ S, compute local property θ (s)
(3) Derive Θ(G) from the set { θ (s) | s ∈ S }

(4) Scale Θ(G) using the inverse sampling probability σ = 1/p (if appropriate)
where p denotes the sampling probability and thus p = K/|G | if uniform random sampling is used
and |G | is the total number of graph elements in G (i.e., |G | = |V | total nodes; or |G | = |E | links).
Notice that step (4) is optional and depends on the statistic being estimated. We often use σ = 1/p

to scale the statistic to the full graph (or full neighborhood in the case of local node/link/subgraph
statistics), especially when estimating global or local count-based statistics (e.g., number of 4-cliques
inG or at a given graph element s). This corresponds to the Horvitz-Thompson construction [3, 37].
However, σ in step (4) can be modified depending on the type of statistic estimated. Furthermore,
step (1) uses simple random sampling for count-based statistics; however, a weighted sampling
strategy is often useful for other types of statistics such as estimating extremal statistics, e.g., max
k-truss number in G. Nevertheless, the approach given above (steps 1-4) clearly results in a better
approximation as the number of samples K increases.

Now we briefly discuss estimating local statistics such as the number of k-cycles or k-cliques at
a given graph element s (node, link). Notice that the runtime of such local statistics depend largely
on the size of the local neighborhood surrounding a graph element s , and thus it is most useful
to estimate only the top-k elements with the largest such neighborhoods (as the vast majority of
other graph elements in sparse graphs have relatively small neighborhoods and can be computed
fast using exact methods). Many local statistics begin by computing the set of neighbors to explore.
In this case, we simply use a sampling method to select a subset of neighbors to explore. Recall that
the sampling will largely depend on the type of statistic being estimated. For estimating extremal

6For example, using uniform random sampling or weighted sampling or other non-uniform sampling technique [5].
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statistics like max, we select the neighbors that will most likely lead to such extreme values, whereas
for count-based statistics we use uniform random sampling with a local scaling (step 4).

Estimation techniques are exploited for computing and maintaining many of the computationally
expensive global statistics (Fig. 9A). Many local statistics are estimated on-the-fly, e.g., when a
user hovers over a node or link, we immediately estimate the local statistics for the selected
graph element. Afterwards these statistics are stored for later use and simply retrieved as needed
and therefore we avoid having to recompute them. Notice that many such local statistics are
computed from the immediate neighborhood of a graph element (e.g., many graphlet statistics such
as triangles), and thus, we determine and update the graph elements and the corresponding local
statistics that are impacted by adding, removing, or changing one or more graph elements (nodes,
links). Similar estimation techniques are used when the user selects a subgraph of interest (Fig. 9B).

8.1.2 Estimation of Subgraph Properties. Techniques for estimating both global (macro) and
local (micro) subgraph counts are incorporated into GraphVis. For instance, estimating the counts
of all 3-node subgraphs (such as triangles), 4-node subgraphs (such as 4-cliques, 4-cycles), among
others. Such techniques are crucial for interactive real-time performance.

Estimation Experiments: We proceed by first demonstrating the effectiveness of the methods for
estimating the local frequency of both connected and disconnected graphlets up to size k = 4. Given
an estimated count X̂i j of an arbitrary graphlet Hi for edge ej ∈ E, we consider the relative error:
E( X̂i j ∥ Xi j ) =

��Xi j − X̂i j
�� /Xi j whereXi j is the actual count ofHi for ej . The relative error indicates

the quality of an estimated graphlet statistic relative to the magnitude of the actual statistic. We
first demonstrate the effectiveness of estimating local graphlet statistics. Table 4 shows the relative
error for the top 1000 links with highest cumulative degree (dv + du ) for each link ej = (v,u).
Notably, these links are also the most computationally challenging and therefore most useful to
estimate. We also demonstrate the effectiveness of estimating global statistics. Experimental results
for estimating the global 4-clique count on a variety of graphs is shown in Table 3.

Impact on Revealing Higher-order Structures: In Fig. 9 (Right), notice the visualization that
uses the estimated graphlet features (to encode the color and size of the links and nodes) is strikingly
similar to the one using exact graphlet features; and the differences are trivial and insignificant.
Hence, the graphlet estimators are extremely accurate and effective for revealing higher-order
structure and organization in large networks. Strikingly, we also observe in Fig. 10 that GraphVis
can be used to detect and spot large cliques and stars visually in real-time using small induced
subgraph patterns (graphlets, motifs). Intuitively, Fig. 10 uses GraphVis to immediately reveal
higher-order structures by encoding the color and size of nodes and links in the network using
the counts of a few network motifs/graphlets. In this way, we can leverage graphlets to find and
rank large stars, cliques, and other larger higher-order structures (Fig. 10) that are of fundamental
importance in many types of networks [8].

Impact on Relational Classification: We also investigate the difference in predictive perfor-
mance when using graphlet features that are estimated (as opposed to exact graphlet features that
are significantly more expensive to compute). Using the terrorist & known association network [70]
(see Fig. 6 for data description) with 5-fold cross-validation and a label density of 10%, we observe
92.29% accuracy with the exact graphlet features and 92.16% with the estimated graphlet features.
Notably, the difference in accuracy between the exact and estimated local graphlet features is in-
significant. As an aside, we used the relational similarity machines (rsm) classifier for prediction [55].
Similar results were found using the cora and citeseer citation networks.
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(a) Near-clique subgraphs

(b) Large star-like subgraphs (c) Revealing important phenotypes

Fig. 10. Higher-order Network Analysis: Spotting, Detecting, and RankingHigher-order Structures.
Graphlets/network motifs are fundamental building blocks of complex networks. (a)-(b) For this use case we

leverage the network science co-authorship graph [49]. Strikingly, we observe that higher-order structures

such as large cliques (which finding the largest clique is NP-hard) and stars can be detected and spotted

visually in real-time using small induced subgraph patterns (graphlets, motifs). Nodes and links are colored by

4-cliques and 3-paths in (a) and (b), respectively. We observe that graphlet frequencies can be used as a proxy

to understand and detect large subgraph patterns as shown above for clique and star-like subgraph patterns.

As shown above, we can easily spot visually and quantitatively rank the larger subgraph patterns by size. (a)

Large dense/near-clique subgraphs are revealed above and naturally form a ranking; ordered from largest

(blue) to smallest (red) as can be easily spotted in the above visualization. (b) Similarly, GraphVis can be

used to quickly spot large star-like subgraphs visually. (c) In addition, using the network of known disorders

and genes linked to them [31] we immediately uncover the largest stars in the graph which correspond to

important phenotypes such as leukemia, color cancer, and deafness (ordered by size). These phenotypes

correspond to hubs (large stars) that connect to a number of distinct disorders which is consistent with [31].

8.2 Parallelization
To support the real-time interactive requirements of GraphVis, many components are parallelized:

• Interactive relational learning and classification algorithms are parallelized. For instance, the
model is recomputed in parallel upon any user interaction that requires significant work such
as the addition/deletion of a subgraph; or whenever a user interactively refines the model
hyperparameters, selects a different kernel function to use, or includes new attributes, etc.

• Global and local graphlet (network motif) statistics & properties are parallelized and updated
whenever a new graph is loaded, or any interactive (visual) query is made by the user (e.g.,
selection of subgraphs to explore).

• Interactive graph partitioning algorithms including the discovery of roles and communities
are computed in parallel whenever appropriate. These are often updated in parallel after
any significant insertion, deletion, or changing of the graph structure, or whenever a user
changes the specific community/role discovery method or hyperparameters.
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We also use hardware acceleration and leverage GPUs for rendering visualizations.

8.2.1 Parallel Performance Experiments. Given p parallel workers (cores, processors), speedup is
defined as Sp = Tseq/Tp where Tseq is the runtime of the sequential algorithm and Tp is the runtime
of the parallel algorithm on p workers. Results are shown in Fig. 11 for two components of GraphVis.
In particular, we observe strong scaling results in both cases.
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(a) Interactive Relational Learning

1 2 4 8 16 32

Number of processing units

0

5

10

15

20

S
p
e
e
d
u
p

socfb-MIT

soc-gowalla

tech-RL-caida

bio-dmela

(b) Interactive Local Graphlets

Fig. 11. Parallel performance. Strong parallel scaling results are observed across a variety of networks.

9 CONCLUSION
This paper proposed an interactive visual graph mining and machine learning platform called
GraphVis for deriving important insights in a timely fashion from large, complex, dynamic, and
uncertain graph data. It is designed to be fast, flexible, and completely interactive. Most importantly,
GraphVis enables users to quickly explore, understand, and obtain key insights into graph data
(for decision-making, planning) with minimum effort by taking advantage of state-of-the-art graph
mining and relational learning techniques paired with a variety of useful visual representations of
the graph data along with easy-to-use and intuitive interaction techniques. Furthermore, we also
proposed techniques for interactive relational learning (e.g., node/link classification), interactive
link prediction and weighting, interactive role discovery and community detection, higher-order
network analysis (via graphlets, network motifs), among others. Human analysts can refine and tune
the various graph mining and relational learning methods in a timely and easy-to-use fashion for
specific tasks and constraints via an end-to-end interactive visual analytic pipeline that learns, infers,
and provides rapid interactive visualization with immediate feedback at each change/prediction
in real-time. Other key aspects of GraphVis include interactive visual filtering, querying, ranking,
manipulating, exporting, as well as tools for interactive dynamic network analysis and visualization,
interactive graph generators/models (including new block model approaches), and a variety of
multi-level network analysis techniques.
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